
Modularity Matters Most

Karl Crary� Robert Harpery Peter Leez Frank Pfenningx

Carnegie Mellon University

Pittsburgh, PA 15213

October 31, 2001

Abstract

We contend that modularity is the key to improving software quality. We advocate a view of

modularity that emphasizes not the mere assembling of software systems from component parts,

but rather the speci�cation of interfaces between components, veri�cation that components meet

their speci�cations, and the assembling only of components with compatible speci�cations.

Key to this methodology is the use of types to specify and automatically to verify adherence

to interfaces. We claim that this methodology makes a higher degree of software correctness

possible than has often been achieved heretofore, and moreover, that it may be achieved in a

practical manner. To reach this goal will require the development of sophisticated new type

system, will require new techniques for modularizing certain correctness properties, and will

require a delicate balance between concise code and automated checking.

�E-mail: crary@cs.cmu.edu (Corresponding author.)
yE-mail: rwh@cs.cmu.edu.
zE-mail: petel@cs.cmu.edu
xE-mail: fp@cs.cmu.edu

1

1 The Importance of Modularity

Over the past decade the software industry has experienced enormous increases in the quantity of
software production. Unfortunately, we have not seen a similar increase in the quality of software or
the productivity of programmers. As a result, society �nds itself increasingly dependent on an ever-
growing body of expensive software that is becoming increasingly unreliable, and this situation has
occurred despite many concentrated research e�orts in various areas such as software engineering,
programming languages, and logic. Software today simply is not fundamentally more reliable than
it was a decade ago.

Our software systems are becoming increasingly complex and inter-reliant and the techniques
and tools provided by the academic community are used only sparsely. In part, this can be at-
tributed to the many barriers to technology transfer. However, we can also recognize that in a
number of ways the methods provided by the research community fail to be applicable to the
problems faced by developers or maintainers of large-scale, long-lived systems.

To address the quality and productivity problem, software producers have moved to a component-
oriented world of programming. A component is a body of code that is deliverable, independently
deployable, and ready for integration in larger systems. In an ideal component world, a number of
producers would create a pool of interchangeable items. A programmer could then build systems
by choosing components from several pools, adapting them, and connecting them as desired.

Building systems from components reduces the construction time and increases quality of soft-
ware. The reduction of cost is obvious. Even the use of plain libraries, the simplest form of
components, reduces the cost of building software systems. The improvement of code is due to the
existence of pools of interchangeable components. If one component fails, the programmer sub-
stitutes it with a less faulty one. The substitutability of components places pressure on software
manufacturers to produce higher quality software.

One important aspect of such component-based software development and maintenance is the
need to understand properties of complete systems, their individual components, and how they in-
teract. There is a wide range of properties of interest, some concerned only with the input/output
behavior of functions, others concerned with concurrency or real-time requirements of processes.
Upon examining the techniques for formally specifying, understanding, and verifying program be-
havior available today, one notices that they are almost bi-polar. On the one extreme we �nd work
on proving the correctness of programs, on the other we �nd type systems for programming lan-
guages. Both of these have clear shortcomings: program proving is very expensive, time-consuming,
and often infeasible, while present type systems support only minimal consistency properties of pro-
grams.

We recommend a program of research to improve the quality of software components for hetero-
geneous systems using programming language technology. We believe that a concentrated e�ort,
involving a balance of fundamental and applied research, can bridge the gap between program prov-
ing and type systems, in part by designing and implementing more re�ned type systems that allow
rich classes of program properties to be expressed, yet still be automatically or semi-automatically
veri�ed. Through careful, logically motivated design, we believe that the best ideas from abstract
interpretation, automated program analysis, type theory, and veri�cation can be combined.

2 The Central Role of Types

The key requirement for the development of robust, maintainable, and composable software mod-
ules is a mechanism for specifying modules' invariants and abstractions, and for ensuring that

2

those invariants and abstractions are respected. Without such a mechanism, individual software
components|even correct software components|cannot be assembled into a working software sys-
tem. Moreover, the stronger the invariants and abstractions that can be speci�ed and enforced,
the more robust the resulting system can be.

Central to the research program we recommend is the methodology of types as the key means of
providing this mechanism. The key advantage of types over all other means of addressing this need
is that types can (and should) be made intrinsic to the programming language in which components
are implemented. Thus, properties provided by types, unlike those provided by extrinsic tools, are
an essential part of the code: they are created as part of the code, and, since they are automatically
veri�ed whenever code is compiled, they cannot be lost or drift out-of-date as the code evolves.

Even simple type systems can guarantee useful properties for software systems, but past research
has resulted in more sophisticated type systems capable of specifying and enforcing quite strong
and complex properties. The facility to make strong assertions regarding component behavior
(thereby ruling out large classes of components that do not abide by those assertions), is the source
of expressiveness in a type system. For example, parametric types enforce data abstractions [6, 7],
and re�nement types [3, 10] enforce value range properties and other data invariants.

We suggest a focus on the use of types to specify and enforce behavioral contracts that provide
assertions concerning the correctness of a system. We identify three levels of software correctness
that will be of interest:

1. The �rst and weakest level of correctness is type safety. A type-safe programming language
guarantees the integrity of data for all programs during execution. In particular, a program
in a type-safe programming language will not produce an erroneous answer, due to a type-
misinterpretation of bits, and will not access data outside of its scope. Despite the weak nature
of safety guarantees, little software actually provides this level of correctness, as testi�ed by
the commonplace need of operating system mechanisms to protect applications from one
another.

2. The second level of correctness is the preservation of a program's key invariants and the
integrity of its data. This level of correctness rules out the more severe software failures that
occur when data structures become logically corrupted.

3. The third level of correctness is complete conformance of software to its intended behavior.

The third level of correctness is obviously the most di�cult to achieve, not only because of the
inherent di�culty in developing bug-free software, but also because ensuring software's complete
correctness requires a complete speci�cation of its intended behavior, which is usually impractical
and often fundamentally impossible. Moreover, this level of correctness is also substantially less
important than the other two. In most cases, one can work around a program's bugs, provided
its key internal invariants are preserved. However, if a program's data becomes corrupted or if it
interferes with other program's data, it is nearly always impossible to make any further use of it.

3 Directions for Research

Due to these considerations, we recommend a focus on the �rst two levels of correctness with a
two-pronged attack. First, we recommend investigation of richer type systems, with the end of
providing stronger properties in the second correctness category. Second, we recommend research
focusing on the particular problem of veri�ed component integration. We discuss each of these two
elements below:

3

3.1 Richer Type Systems

Most type systems in use in programming languages today provide (at most) the �rst level of
software correctness, type safety. This level of correctness is important, and indeed is a prerequisite
for the achievement of stronger levels of correctness. However, the state-of-the-art in type systems
research has this level well in hand. We recommend that type systems research now move to
ensuring the second level of correctness, protecting invariants and data integrity.

There are a variety of avenues for this research we recommend. In some avenues, research has
made progress but there is still far to go; in others, research is only just beginning:

� One category of invariants for type systems to specify and enforce are simple properties of
data structures such as value ranges (e.g., for integers: even, positive, or within f0; : : : ; 127g,
for strings: non-emptiness or bounds on length.). Other properties that are somewhat more
complicated, but are often amenable to similar treatment, are basic data structure invariants
such as the red-black invariants on red-black binary search trees.

Such properties as these are relatively elementary, but can be extremely important. In fact,
the Computer Emergency Response Team (CERT) has observed that a majority of all com-
puter security
aws are due to failures of this sort of property. A variety of type re�nement
systems have been proposed for ensuring properties such as these [3, 10].

� Another category of integrity properties are ones regarding the evolution of state in commu-
nicating or reactive software systems [9]. A particularly important example of such properties
are those that state that a system's communications adhere to some protocol.

� An important category of properties are bounds on the resources (e.g., time, space, or network
bandwidth) that a software component may consume [2]. Despite the obvious importance of
such properties (a system that uses too many resources does not work at all), they are often
ignored outside of embedded or real-time applications.

� Information
ow properties are particularly important for some applications [5, 4, 1, 8]. These
properties state that con�dential information (or data derived from con�dential information),
although it may be processed by an application, is never passed on to a subcomponent or
external agent that is not authorized to receive that information.

3.2 Veri�ed Component Integration

The research program we recommend into richer type systems can be expected to make progress
toward more correct software in homogeneous systems, systems that are built from components, all
of which were implemented in a single rich type system (typically a single programming language).
However, real world systems often do not have the luxury of homogeneity. It is often reasonable
to assemble a software system from components veri�ed in entirely di�erent type systems, or even
veri�ed using a means other than types.

Therefore, the second element of our recommended research program is to develop means for
integrating diverse, veri�ed components into a single veri�ed whole. We suggest an architecture
based on three parts:

� A semantically rich interface language for composing heterogeneous software components.
Although several interface languages already exist, those that now exist focus merely on data
formats (think of this as category one correctness), and do not provide richer speci�cations
component behaviors.

4

� A \semantic linking" tool, that combines software components, ensuring that the requirements
speci�ed in the interface language are adhered to. The semantic linker also would translate
data between the representations of the various components in a manner speci�ed by the
interface.

� Finally, for some code it may be prohibitively di�cult to verify the properties speci�ed by
the interface. In the worst case, these desired properties may not even hold. Therefore, our
suggested architecture contains an \interface coercion" tool, which automatically transforms
code to make the desired properties easy to verify, but at the cost of run-time overhead. This
tool would be critical for the utilization of legacy code.

For example, when a component is required to return an integer within a speci�ed range,
but it is impractical to verify adherence to this requirement, an interface coercer might insert
wrapper code that checks the component's output to ensure it is within the speci�ed range
and signal an exceptional condition when it does not. This wrapper code makes the property
easy to verify at the cost of run-time overhead.

4 Some Obstacles to Success

In our recommended research program, there are some obstacles to success that can be anticipated
from the beginning. First, the program depends on the composition of individual veri�ed component
into larger veri�ed wholes, as a means of improving software quality (i.e., correctness). However,
it is clear that not all important properties of programs are easily modularizable. For example:

� Although the resource usage of a software system can be obtained by aggregating the resource
usages of individual components, it can be very di�cult to specify the resource usages of such
components in isolation [2], since they can depend dramatically on how that component is
used. Developments in modular resource bound veri�cation will likely need to come in lock-
step with developments in speci�cation of data value ranges or even state evolution (discussed
above).

� The correctness of
oating point goes can be particularly di�cult to establish in a modular
fashion. Typically the veri�cation of a software component's output is done relative to that
component's inputs. In doing so, one implicitly assumes that one's inputs are correct. How-
ever, in
oating point code, a component's inputs very rarely are exact. This complicates
modularization of
oating point code, because component that work correctly in isolation
(depending on exact inputs) often cannot be composed correctly; rather, each component
must deal with possible inexactness.

The second obstacle is as follows: the recommended research program depends on automated
checking, to make sure that the properties speci�ed by a component's types are adhered to in its
initial implementation and as it evolves. However, it is not currently clear how far mechanical
checking can go. As more important (and complicated) properties are attempted, speci�cations
may become as complicated as the code itself.

This di�culty is exacerbated by the tension between checkability and conciseness. To make
a rich type system tractable for automated checking, one often requires additional annotations in
the code. These additional annotations may be burdensome for the programmer; but, lifting those
annotations may make checking take a long time, which is also burdensome for the programmer.
A practical type system requires a delicate balance between these two factors.

5

References

[1] Mart��n Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. A core calculus of
dependency. In ACM, editor, POPL '99. Proceedings of the 26th ACM SIGPLAN-SIGACT
on Principles of programming languages, January 20{22, 1999, San Antonio, TX, pages 147{
160, New York, NY, USA, 1999. ACM Press.

[2] Karl Crary and Stephanie Weirich. Resource bound certi�cation. In Twenty-Seventh ACM
SIGPLAN/SIGACT Symposium on Principles of Programming Languages, pages 184{198,
Boston, January 2000.

[3] Tim Freeman and Frank Pfenning. Re�nement types for ML. In Proceedings of the SIGPLAN
'91 Symposium on Language Design and Implementation, Toronto, Ontario, pages 268{277.
ACM Press, June 1991.

[4] Nevin Heintze and Jon G. Riecke. The SLam calculus: programming with secrecy and in-
tegrity. In ACM, editor, Conference record of POPL '98: the 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, San Diego, California, 19{21 January
1998, pages 365{377, New York, NY, USA, 1998. ACM Press.

[5] Andrew C. Myers. JFlow: Practical mostly-static information
ow control. In Proceedings
of the 26th Annual Symposium on Principles of Programming Languages, pages 228{241, San
Antonio, TX, January 1999.

[6] John C. Reynolds. Towards a theory of type structure. In Colloq. sur la Programmation,
volume 19 of Lecture Notes in Computer Science, pages 408{423. Springer-Verlag, 1974.

[7] John C. Reynolds. Types, abstraction, and parametric polymorphism. In R. E. A. Mason,
editor, Information Processing '83, pages 513{523. Elsevier Science Publishers B. V., 1983.

[8] Dennis Volpano, Geo�rey Smith, and Cynthia Irvine. A sound type system for secure
ow
analysis. Journal of Computer Security, 4(3):167{187, 1996.

[9] David Walker, Karl Crary, and Greg Morrisett. Typed memory management via static capa-
bilities. ACM Transactions on Programming Languages and Systems, 22(4), July 2000. An
earlier version appeared in the 1999 Symposium on Principles of Programming Languages.

[10] Hongwei Xi and Frank Pfenning. Dependent types in practical programming. In Confer-
ence Record of the 26th ACM SIGPLAN/SIGACT Symposium on Principles of Programming
Languages, pages 214{227, January 1999.

6

